DB code: D00417

RLCP classification 3.1147.6010.88 : Transfer
3.133.90010.393 : Transfer
CATH domain 3.90.550.10 : Spore Coat Polysaccharide Biosynthesis Protein SpsA; Chain A Catalytic domain
2.160.10.10 : UDP N-Acetylglucosamine Acyltransferase; domain 1 Catalytic domain
E.C. 2.7.7.23 2.3.1.157
CSA 1hv9
M-CSA 1hv9
MACiE

CATH domain Related DB codes (homologues)
2.160.10.10 : UDP N-Acetylglucosamine Acyltransferase; domain 1 D00464 S00167 D00094
3.90.550.10 : Spore Coat Polysaccharide Biosynthesis Protein SpsA; Chain A S00709 S00465 S00466 D00859 D00860 T00415

Uniprot Enzyme Name
UniprotKB Protein name Synonyms Includes RefSeq Pfam
P0ACC7 Bifunctional protein GlmU
None UDP-N-acetylglucosamine pyrophosphorylase
EC 2.7.7.23
N-acetylglucosamine-1-phosphate uridyltransferase
Glucosamine-1-phosphate N-acetyltransferase
EC 2.3.1.157
NP_418186.1 (Protein)
NC_000913.2 (DNA/RNA sequence)
YP_491699.1 (Protein)
NC_007779.1 (DNA/RNA sequence)
PF00132 (Hexapep)
PF12804 (NTP_transf_3)
[Graphical View]
Q97R46 Bifunctional protein GlmU
None UDP-N-acetylglucosamine pyrophosphorylase
EC 2.7.7.23
N-acetylglucosamine-1-phosphate uridyltransferase
Glucosamine-1-phosphate N-acetyltransferase
EC 2.3.1.157
NP_345467.1 (Protein)
NC_003028.3 (DNA/RNA sequence)
PF00132 (Hexapep)
PF00483 (NTP_transferase)
[Graphical View]

KEGG enzyme name
UDP-N-acetylglucosamine diphosphorylase
(EC 2.7.7.23 )
UDP-N-acetylglucosamine pyrophosphorylase
(EC 2.7.7.23 )
uridine diphosphoacetylglucosamine pyrophosphorylase
(EC 2.7.7.23 )
UTP:2-acetamido-2-deoxy-alpha-D-glucose-1-phosphateuridylyltransferase
(EC 2.7.7.23 )
UDP-GlcNAc pyrophosphorylase
(EC 2.7.7.23 )
GlmU uridylyltransferase
(EC 2.7.7.23 )
Acetylglucosamine 1-phosphate uridylyltransferase
(EC 2.7.7.23 )
UDP-acetylglucosamine pyrophosphorylase
(EC 2.7.7.23 )
uridine diphosphate-N-acetylglucosamine pyrophosphorylase
(EC 2.7.7.23 )
uridine diphosphoacetylglucosamine phosphorylase
(EC 2.7.7.23 )
acetylglucosamine 1-phosphate uridylyltransferase
(EC 2.7.7.23 )
glucosamine-1-phosphate N-acetyltransferase
(EC 2.3.1.157 )

UniprotKB: Accession Number Entry name Activity Subunit Subcellular location Cofactor
P0ACC7 GLMU_ECOLI Acetyl-CoA + alpha-D-glucosamine 1-phosphate = CoA + N-acetyl-alpha-D-glucosamine 1-phosphate. UTP + N-acetyl-alpha-D-glucosamine 1-phosphate = diphosphate + UDP-N-acetyl-D-glucosamine. Homotrimer. In vivo forms an hexameric aggregate. Cytoplasm. Binds 1 magnesium ion per subunit. Can also use cobalt ions to a lesser extent.
Q97R46 GLMU_STRPN Acetyl-CoA + alpha-D-glucosamine 1-phosphate = CoA + N-acetyl-alpha-D-glucosamine 1-phosphate. UTP + N-acetyl-alpha-D-glucosamine 1-phosphate = diphosphate + UDP-N-acetyl-D-glucosamine. Homotrimer. Cytoplasm. Binds 1 magnesium ion per subunit. Can also use calcium ion to a lesser extent.

KEGG Pathways
Map code Pathways E.C.
MAP00530 Aminosugars metabolism 2.7.7.23 2.3.1.157

Compound table
Cofactors Substrates Products Intermediates
KEGG-id C00305 C00075 C04501 C00024 C06156 C00013 C00043 C00010 C04256
E.C. 2.7.7.23
2.7.7.23
2.7.7.23
2.3.1.157
2.3.1.157
2.7.7.23
2.7.7.23
2.3.1.157
2.3.1.157
Compound Magnesium UTP N-Acetyl-alpha-D-glucosamine 1-phosphate acetyl-CoA D-glucosamine 1-phosphate Pyrophosphate UDP-N-acetyl-D-glucosamine CoA N-acetyl-D-glucosamine 1-phosphate
Type divalent metal (Ca2+, Mg2+) amide group,nucleotide amide group,carbohydrate,phosphate group/phosphate ion amine group,carbohydrate,nucleotide ,peptide/protein,sulfide group amine group,carbohydrate,phosphate group/phosphate ion phosphate group/phosphate ion amide group,carbohydrate,nucleotide amine group,carbohydrate,nucleotide ,peptide/protein,sulfhydryl group amide group,carbohydrate,phosphate group/phosphate ion
ChEBI 18420
18420
15713
15713
16446
16446
15351
15351
27625
27625
29888
29888
16264
16264
15346
15346
7125
7125
PubChem 888
888
6133
6133
440364
440364
444493
6302
444493
6302
188960
188960
1023
21961011
1023
21961011
445675
445675
6816
87642
6816
87642
440272
440272
1fwyA01 Unbound Unbound Unbound Unbound Unbound Unbound Bound:UD1 Unbound Unbound
1fwyB01 Unbound Unbound Unbound Unbound Unbound Unbound Bound:UD1 Unbound Unbound
1fxjA01 Unbound Unbound Unbound Unbound Unbound Analogue:SO4 Unbound Unbound Unbound
1fxjB01 Unbound Unbound Unbound Unbound Unbound Analogue:SO4 Unbound Unbound Unbound
1hv9A01 Unbound Unbound Unbound Unbound Unbound Unbound Bound:UD1 Unbound Unbound
1hv9B01 Analogue:_CO Unbound Unbound Unbound Unbound Unbound Bound:UD1 Unbound Unbound
1g95A01 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1g97A01 Bound:_MG Unbound Unbound Unbound Unbound Unbound Bound:UD1 Unbound Unbound
1hm0A01 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1hm0B01 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1hm8A01 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1hm8B01 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1hm9A01 Analogue:_CA Unbound Unbound Unbound Unbound Unbound Bound:UD1 Unbound Unbound
1hm9B01 Analogue:_CA Unbound Unbound Unbound Unbound Unbound Bound:UD1 Unbound Unbound
1fwyA02 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1fwyB02 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1fxjA02 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1fxjB02 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1hv9A02 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Bound:COA Unbound
1hv9B02 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Bound:COA Unbound
1g95A02 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1g97A02 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1hm0A02 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1hm0B02 Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound Unbound
1hm8A02 Unbound Unbound Unbound Bound:ACO Unbound Unbound Unbound Unbound Unbound
1hm8B02 Unbound Unbound Unbound Bound:ACO Unbound Unbound Unbound Unbound Unbound
1hm9A02 Unbound Unbound Unbound Bound:ACO Unbound Unbound Unbound Unbound Unbound
1hm9B02 Unbound Unbound Unbound Bound:ACO Unbound Unbound Unbound Unbound Unbound

Reference for Active-site residues
resource references E.C.
literature [6], [10]

Active-site residues
PDB Catalytic residues Cofactor-binding residues Modified residues Main-chain involved in catalysis Comment
1fwyA01 ARG 18;LYS 25 ASP 105;ASN 227(Magnesium binding) (2.7.7.23)
1fwyB01 ARG 18;LYS 25 ASP 105;ASN 227(Magnesium binding) (2.7.7.23)
1fxjA01 ARG 18;LYS 25 ASP 105;ASN 227(Magnesium binding) (2.7.7.23)
1fxjB01 ARG 18;LYS 25 ASP 105;ASN 227(Magnesium binding) (2.7.7.23)
1hv9A01 ARG 18;LYS 25 ASP 105;ASN 227(Magnesium binding) (2.7.7.23)
1hv9B01 ARG 18;LYS 25 ASP 105;ASN 227(Magnesium binding) (2.7.7.23)
1g95A01 ARG 15;LYS 22 ASP 102;ASN 227(Magnesium binding) (2.7.7.23)
1g97A01 ARG 15;LYS 22 ASP 102;ASN 227(Magnesium binding) (2.7.7.23)
1hm0A01 ARG 15;LYS 22 ASP 102;ASN 227(Magnesium binding) (2.7.7.23)
1hm0B01 ARG 15;LYS 22 ASP 102;ASN 227(Magnesium binding) (2.7.7.23)
1hm8A01 ARG 15;LYS 22 ASP 102;ASN 227(Magnesium binding) (2.7.7.23)
1hm8B01 ARG 15;LYS 22 ASP 102;ASN 227(Magnesium binding) (2.7.7.23)
1hm9A01 ARG 15;LYS 22 ASP 102;ASN 227(Magnesium binding) (2.7.7.23)
1hm9B01 ARG 15;LYS 22 ASP 102;ASN 227(Magnesium binding) (2.7.7.23)
1fwyA02 ; ; (2.3.1.157) active-site truncated
1fwyB02 ; ; (2.3.1.157) active-site truncated
1fxjA02 ; ; (2.3.1.157) active-site truncated
1fxjB02 ; ; (2.3.1.157) active-site truncated
1hv9A02 GLU 349;HIS 363;SER 405 ALA 380 (2.3.1.157)
1hv9B02 GLU 349;HIS 363;SER 405 ALA 380 (2.3.1.157)
1g95A02 GLU 348;HIS 362;SER 404 ALA 379 (2.3.1.157)
1g97A02 GLU 348;HIS 362;SER 404 ALA 379 (2.3.1.157)
1hm0A02 GLU 348;HIS 362;SER 404 ALA 379 (2.3.1.157)
1hm0B02 GLU 348;HIS 362;SER 404 ALA 379 (2.3.1.157)
1hm8A02 GLU 348;HIS 362;SER 404 ALA 379 (2.3.1.157)
1hm8B02 GLU 348;HIS 362;SER 404 ALA 379 (2.3.1.157)
1hm9A02 GLU 348;HIS 362;SER 404 ALA 379 (2.3.1.157)
1hm9B02 GLU 348;HIS 362;SER 404 ALA 379 (2.3.1.157)

References for Catalytic Mechanism
References Sections No. of steps in catalysis
[6]
p.4100-4102
[7]
Fig.7, p.286 3
[9]
p.11851

References
[1]
Resource
Comments IDENTIFICATION
Medline ID 94012475
PubMed ID 8407787
Journal J Bacteriol
Year 1993
Volume 175
Pages 6150-7
Authors Mengin-Lecreulx D, van Heijenoort J
Title Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli.
Related PDB
Related UniProtKB P0ACC7
[2]
Resource
Comments CHARACTERIZATION
Medline ID 94364959
PubMed ID 8083170
Journal J Bacteriol
Year 1994
Volume 176
Pages 5788-95
Authors Mengin-Lecreulx D, van Heijenoort J
Title Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis.
Related PDB
Related UniProtKB P0ACC7
[3]
Resource
Comments
Medline ID
PubMed ID 7653162
Journal Acta Biochim Pol
Year 1995
Volume 42
Pages 55-9
Authors Szumilo H, Szumilo T, Elbein AD
Title Synthesis of 5-IASA-UDP-GlcNAc and its use for the photoaffinity labeling of a novel UDP-GlcNAc pyrophosphorylase.
Related PDB
Related UniProtKB
[4]
Resource
Comments CHARACTERIZATION
Medline ID 96140233
PubMed ID 8555230
Journal Biochemistry
Year 1996
Volume 35
Pages 579-85
Authors Gehring AM, Lees WJ, Mindiola DJ, Walsh CT, Brown ED
Title Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli.
Related PDB
Related UniProtKB P0ACC7
[5]
Resource
Comments
Medline ID
PubMed ID 9733680
Journal J Bacteriol
Year 1998
Volume 180
Pages 4799-803
Authors Pompeo F, van Heijenoort J, Mengin-Lecreulx D
Title Probing the role of cysteine residues in glucosamine-1-phosphate acetyltransferase activity of the bifunctional GlmU protein from Escherichia coli: site-directed mutagenesis and characterization of the mutant enzymes.
Related PDB
Related UniProtKB
[6]
Resource
Comments X-ray crystallography
Medline ID
PubMed ID 10428949
Journal EMBO J
Year 1999
Volume 18
Pages 4096-107
Authors Brown K, Pompeo F, Dixon S, Mengin-Lecreulx D, Cambillau C, Bourne Y
Title Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily.
Related PDB 1fwy 1fxj
Related UniProtKB
[7]
Resource
Comments
Medline ID
PubMed ID 11124906
Journal J Mol Biol
Year 2001
Volume 305
Pages 279-89
Authors Kostrewa D, D'Arcy A, Takacs B, Kamber M
Title Crystal structures of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase, GlmU, in apo form at 2.33 A resolution and in complex with UDP-N-acetylglucosamine and Mg(2+) at 1.96 A resolution.
Related PDB 1g95 1g97
Related UniProtKB
[8]
Resource
Comments
Medline ID
PubMed ID 11084021
Journal J Biol Chem
Year 2001
Volume 276
Pages 3833-9
Authors Pompeo F, Bourne Y, van Heijenoort J, Fassy F, Mengin-Lecreulx D
Title Dissection of the bifunctional Escherichia coli N-acetylglucosamine-1-phosphate uridyltransferase enzyme into autonomously functional domains and evidence that trimerization is absolutely required for glucosamine-1-phosphate acetyltransferase activity and cell growth.
Related PDB
Related UniProtKB
[9]
Resource
Comments
Medline ID
PubMed ID 11118459
Journal J Biol Chem
Year 2001
Volume 276
Pages 11844-51
Authors Sulzenbacher G, Gal L, Peneff C, Fassy F, Bourne Y
Title Crystal structure of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase bound to acetyl-coenzyme A reveals a novel active site architecture.
Related PDB 1hm0 1hm8 1hm9
Related UniProtKB
[10]
Resource
Comments
Medline ID
PubMed ID 11329257
Journal Biochemistry
Year 2001
Volume 40
Pages 1913-21
Authors Olsen LR, Roderick SL
Title Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites
Related PDB 1hv9
Related UniProtKB
[11]
Resource
Comments
Medline ID
PubMed ID 11173485
Journal Acta Crystallogr D Biol Crystallogr
Year 2001
Volume 57
Pages 296-7
Authors Olsen LR, Tian Y, Roderick SL
Title Purification, crystallization and preliminary X-ray data for Escherichia coli GlmU: a bifunctional acetyltransferase/uridyltransferase.
Related PDB
Related UniProtKB
[12]
Resource
Comments
Medline ID
PubMed ID 12171937
Journal J Biol Chem
Year 2002
Volume 277
Pages 44214-9
Authors Sivaraman J, Sauve V, Matte A, Cygler M
Title Crystal structure of Escherichia coli glucose-1-phosphate thymidylyltransferase (RffH) complexed with dTTP and Mg2+.
Related PDB
Related UniProtKB

Comments
(B4) Moreover, Ser404 as well as mainchain amide of Ala379 stabilizes the negative charge on the thioester carbonyl during the transition state.
This protein is a bifunctional enzyme, catalyzing two sequential reactions, with two distinct domains. The first domain functions as a uridylyltransferase (EC 2.7.7.23), which catalyzes the second reaction, whilst the second domain serve as a acetyltransferase (EC 2.3.1.157) that catalyzes the first one (see [4]).
(A) Phosphoryl transfer:
Papers [6] & [7] mentioned catalytic mechanism of uridylyltransferase (EC 2.7.7.23). The paper [7] proposed a catalytic mechanism, in which transphosphorylation is assumed to proceed through SN2 mechanism.
In the proposed mechanism, the reaction proceeds as follows:
(A1) A non-esterified phosphate oxygen atom of GlcNAc-1-P makes a nucleophilic attack on the alpha-phosphate group of UTP, forming penta-coordinated phosphorane transition state with the attacking group and leaving group, pyrophosphate.
(A2) Here, the transition state might be stabilized by the positive charge of Mg2+ ion, which is bound to the oxygen atoms from the transferred alpha-phosphate group and attacking phosphate group as well as Asp102 and Asn227 (PDB;1g97), and the sidechain amino group of Lys22 (PDB;1g97). On the other hand, the leaving pyrophosphate can be stabilized by Arg15 (PDB;1g97).
(A3) The transfer reaction results in the inversion of the configuration at the alpha-phosphate group.
(B) Acyl transfer:
Paper [9] proposed a catalytic mechanism for acyltransferase (EC 2.3.1.157). According to the paper [9], the reaction proceeds as follows:
(B1) Glu348, hydrogen bonding to His362, might modulate the activity of His362.
(B2) His362 (PDB;1hm9) function as a general base, which activates the acceptor amine group of glucosamine-1-P, by abstracting a proton from the amine group.
(B3) The amine group can make a nucleophilic attack on the acyl group of acetyl-CoA.

Created Updated
2003-07-22 2009-04-03