RLCP 3.1187.70500.5510 :EzCatDB EzCatDB

R L C P
Hierarchic Classification of Catalytic Mechanisms


R 3.-.-.- : Transfer (bond cleavage and new bond formation) (Reaction)

L 3.1187.-.- : Acyl group from Sulfur atom to Carbon (sp3) (Ligand group involved)

C 3.1187.70500.- : 8-amino-7-oxononanoate synthase acyl transfer mechanism (Base/Stabilizer); Base activation of acceptor group; Organic-cofactor-assisted nucleophilic attack of acceotor group on transferred group; release of leaving group; SN2-like reaction (Catalytic mechanism)

P 3.1187.70500.5510 : Lys/His + PLP double-bonded to substrate/intermediate (Residues/cofactors in Protein)


1st Nucleophile : an acceptor group in substrate
Catalytic groups : cofactor + groups in residue/substrate
General Base : non-existent
General Acid : non-existent

Related Enzymes

There is one entry in this class.
  • D00092 : (reaction 2) 2.3.1.47; 8-amino-7-oxononanoate synthase (Catalytic domains; 3.40.640.10, 3.90.1150.10)
  • Copyright: Nozomi Nagano, JST & CBRC-AIST
    Funded by PRESTO/Japan Science and Technology Agency (JST) (December 2001 - November 2004)
    Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2006)
    Funded by Grant-in-Aid for Scientific Research (B)/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2008)
    Funded by BIRD/Japan Science and Technology Agency (JST) (September 2005 - September 2008)
    Funded by BIRD/Japan Science and Technology Agency (JST) (October 2007 - September 2010)
    Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2011 - March 2012)
    Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2012 - March 2013)
    Supported by the commission for the Development of Artificial Gene Synthesis Technology for Creating Innovative Biomaterial from the Ministry of Economy, Trade and Industry (METI) (October 2012 - March 2016)
    Funded by the project commissioned by the New Energy and Industrial Technology Development Organization (NEDO) (April 2016 -)